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ABSTRACT: We present the systematic prospective evalua-
tion of a protein-based and a ligand-based virtual screening
platform against a set of three G-protein-coupled receptors
(GPCRs): the β-2 adrenoreceptor (ADRB2), the adenosine
A2A receptor (AA2AR), and the sphingosine 1-phosphate
receptor (S1PR1). Novel bioactive compounds were identified
using a consensus scoring procedure combining ligand-based
(frequent substructure ranking) and structure-based (Snooker)
tools, and all 900 selected compounds were screened against
all three receptors. A striking number of ligands showed
affinity/activity for GPCRs other than the intended target,
which could be partly attributed to the fuzziness and overlap of
protein-based pharmacophore models. Surprisingly, the phosphodiesterase 5 (PDE5) inhibitor sildenafil was found to possess
submicromolar affinity for AA2AR. Overall, this is one of the first published prospective chemogenomics studies that
demonstrate the identification of novel cross-pharmacology between unrelated protein targets. The lessons learned from this
study can be used to guide future virtual ligand design efforts.

■ INTRODUCTION
Chemogenomics is a relatively novel research area aimed at
systematically studying the biological effect of a large number of
small molecules (ligands) on a large number of macromolecular
targets (gene products).1−4 Since experimental measurements of
a large number of ligand−target interactions are time-consuming
and cost intensive, they are often complemented by high-
throughput in silico chemogenomics approaches. These virtual
screening methods are typically divided into ligand-based and
target-based approaches, and both approaches can be employed
to profile either a ligand against a set of proteins or a set of
ligands against one specific protein target.5,6 Both methods have
been successfully applied in the drug discovery context5,6 with
the aim to guide the development of a compound with the
desired bioactivity profile.7−10

What needs to be kept in mind is that the applicability of
in silico chemogenomics models depends on the quality and
completeness of the training sets that are used for model
construction and validation.11 Bioactivity data of small
molecules in particular are often incomplete, since molecules
are not usually screened systematically against a large panel of
protein targets but often only on a select set comprising
the target of interest and a limited number of proteins over
which selectivity needs to be achieved.12 Furthermore, most
scientific studies focus on the presentation of “active” molecules
and (potentially) “inactive” molecules are often not reported,
leading to a selection bias of published bioactivity data.12

Even in annotated ligand databases such as ChEMBLdb,13

Received: February 28, 2012
Published: May 7, 2012

Article

pubs.acs.org/jmc

© 2012 American Chemical Society 5311 dx.doi.org/10.1021/jm300280e | J. Med. Chem. 2012, 55, 5311−5325

pubs.acs.org/jmc


DrugBank,14 BindingDB,15−17 PDBBind,18,19 MOAD,20,21

WOMBAT,22 and GLIDA23 protein−ligand interaction matrices
are incomplete.12

Computational methods have, however, been successfully
used to fill the gap in experimental ligand−target affinity
matrices24 and to identify new drug−target associations.5,25

From generalization of this analysis, the high number of active
molecules in target-annotated chemical databases even allows
for the identification of molecular features that determine
binding to specific proteins and protein classes.26 The principle
that similar receptors bind similar ligands27 is used in ligand-
based virtual screening methods that extrapolate from known
active compounds28 and aim to identify structurally diverse
compounds having similar bioactivities29 by use of techniques
like substructure mining,26 molecular fingerprint similarity
searches,30 and ligand-based pharmacophore models.31 These
techniques are generally faster than methods utilizing the
structure of the protein target, such as molecular docking32 and
protein structure-based pharmacophore models,33 and in most
cases they can be trained on larger data sets. Structure-based
methods on the other hand are more suitable for finding ligands
that are structurally novel and offer insight in the atomic details
of protein−ligand interactions.
The recent elucidation of GPCR structures enables in silico

screens based on structure-based approaches for this protein
family,34 which is particularly relevant for the identification
of new ligands and the prediction of their binding modes.35

The research project described herein is hence an effort to
utilize, and evaluate, the increasing amount of information on
the structural side (such as X-ray structures) as well as the
bioactivity database side (such as the ChEMBL database13).
Accordingly, we in parallel applied two different virtual
screening approaches in the current work, the first one being
based on the recently elucidated receptor structures and the
second one being based on ligand bioactivity information, in
order to select potentially bioactive compounds.
More specifically, our work focused on the discovery of novel

bioactive compounds against a panel of three pharmaceutically
relevant receptors, namely, the β-2 adrenoreceptor (ADRB2),
the adenosine A2A receptor (AA2AR), and the sphingosine
1-phosphate receptor (S1PR1). While ADRB2 plays an
important role in cardiovascular disorders,36 asthma,36 and
other pulmonary disease states,36 AA2AR is involved in coronary
disease36 and Parkinson’s disease.37 The S1PR1 on the other
hand is an important target in the treatment of autoimmune
diseases36 and, potentially, cancer.38 ADRB2 and AA2AR were
the first druggable GPCRs for which crystal structures have been
obtained39,40 and are representative of the selected few GPCRs
for which protein crystal structures are available. It was only very
recently (February 17, 2012), during the preparation of the
current manuscript, that the ligand bound crystal structure of
S1PR1 was released.41 Interestingly, the S1PR1 homology model
based pharmacophore constructed in the current study (prior to
the release of this X-ray structure) contains the most essential
protein−ligand interactions observed in the experimentally
determined S1PR1 structure (as will be discussed).41 One
particular reason why a structure-based model of S1PR1 was
relevant in the context of the current study is that while
considerable ligand information is available for ADRB2 and
AA2AR, this is not the case for S1PR1. Hence, structure-based
confirmation would be of great importance for S1PR1. Because
of the diversity and number of ligands available, when going from
the AA2AR via the ADRB2 to the S1PR1 receptor, one would

expect the relative importance of the ligand-based model to
decrease and that of the structure-based model to increase for
identifying novel bioactive compounds. An additional, practical
consideration for selecting these receptors was our ability to
perform experimental assays for the targets mentioned to
prospectively validate our models.
In a prospective manner, we selected 300 compounds per

receptor target and tested all compounds for bioactivity on all
three targets in a cross-screening experiment. This approach
allowed us to address the primary aim of our study, namely, to
validate and compare structure-based and ligand-based screen-
ing approaches against complete biological data (i.e., for all
ligands against all targets). This would give insights into what
degree hits are (also) active against a different receptor than
the target they were selected for. The overarching goal was to
determine which method is superior in virtual compound
screening and also to gauge whether there might exist any
hidden relationship (such as shared information, resulting in
mutual enrichment of bioactive compounds) between the
different models employed.

■ RESULTS AND DISCUSSION

The aim of the current study was to evaluate the performance of
(combined) ligand- and structure-based virtual screening
approaches (Figure 1), optimized using retrospective screening
simulations (Figures 2 and 3) and applied in a prospective,
experimental all-against-all validation (Figures 4−8 and Tables 1
and 2).

Chemical Diversity of the Ligand Training Sets. A large
diversity space of active compounds is desired in drug design
projects because it allows the selection and synthesis of druglike
compounds with good solubility, ADMET properties, and
good selectivity toward only the desired targets. In order to
understand similarities between the targets investigated in this
work in more detail, we first analyzed the diversity of the
bioactive ligand sets employed for training. The diversity of the
50 most dissimilar compounds for AA2AR and ADRB2 in BCI
fingerprint space is presented in Figure 2. ADRB2 ligands are
more similar to each other (average Euclidean distance of ∼11)
and form a rather tight cluster, as compared to AA2AR ligands
(with an average Euclidean distance of ∼14). This suggests that
it is more challenging to find novel ligands for the ADRB2
receptor than for the AA2AR receptor. S1PR1 compounds
include primarily compounds that are chemically similar to the
endogeneous ligand sphingosine 1-phosphate. Diversity selec-
tion of S1PR1 compounds is therefore not very informative, and
results based on S1PR1 training set compounds are expected to
be biased toward these chemical series.

Pharmacophore Models Match Experimentally Sup-
ported Ligand Binding Modes. In order to generate insight
into our structure-based pharmacophore models, we first
investigated binding modes of ligands and related this back to
previous crystal structures as well as mutation studies.
It can be seen (Figure 3) that several polar residues, namely,

T883.36, Q893.37, N2536.55, E16945.53, and S2777.42, form H-bond
interactions with cocrystallized AA2AR ligands in crystal
structures,40,41 as well as being important in agonist (and
xanthine antagonist) binding according to site-directed muta-
genesis studies.42−46 The structure-based pharmacophore
model of AA2AR used in our virtual screen includes interaction
features derived from three of these polar residues, namely,
T883.36, N2536.55, and S2777.42.
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ADRB2 ligands share an essential positively charged amine,
as well as an aromatic ring separated by a distance of about
5 Å (partial and full agonists) to 7 Å (inverse agonists and
antagonists). The ADRB2 crystal structure39 shows protein−ligand

interactions to residues D1133.32, S2035.42, N3127.39, and F2906.52,
which is in line with site-directed mutagenesis studies.47−50

Furthermore, mutation of residues S2045.43, S2075.46, N2936.55,
and Y3087.35 were shown to affect partial and full agonist

Figure 1. Virtual screening flowchart. Numbers indicate the number of compounds that pass the respective structure-based and ligand-based
bioactivity models. Bold numbers indicate the number of actives included in the selections. Note that out of the 300 compounds selected for each of
the targets, some overlap between the hit lists had to be removed and not all compounds were available as physical samples, leading to slight
modifications of the hit lists suggested by the virtual screening methods.

Figure 2. Visualization of ligand similarities for the known actives on the adenosine A2A and the β-2 adrenergic receptor, represented by (left)
stochastic proximity embedding and (right) distribution of Euclidean distances. While, on average, ADRB2 ligands (red) are more similar to each
other, some atypical ligands can also be found that resemble compounds active on AA2AR (blue).

Figure 3. Important interacting residues for the different receptors with the pharmacophores and fitted compounds. AA2AR: related to acceptor
features, N1815.42 and N2536.55, T883.36 and S2777.42; related to donor features, N1815.42 and N2536.55, T883.36 and S2777.42; hydrophobic features,
V843.32 and L853.33. ADRB2: acceptors, Y1995.38 and S2035.42 and S2075.46, N3127.39; donors, D1133.32, Y1995.38, and S2035.42 and S2075.46;
hydrophobic feature, V1143.33. S1PR1: acceptors, R1203.28, E1213.29; donor, R1203.28; hydrophobic features, Y2025.39 and L2766.55, Y2025.39 and
L2766.55. For each compound, the highest scoring substructure that matched the compound is highlight in red.
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binding.51−53 The ADRB2 pharmacophore model contains a
hydrophobic contact with V1143.33 and polar interactions with
N2937.39, D1133.32, S2035.42, and S2075.46 as supported by ligand
cocrystallized ADRB2 crystal structures and site-directed muta-
genesis studies47−53 (Figures 3 and 4).
S1PR1 receptor ligands are characterized by the presence of

a polar head region, which contains negatively and positively
charged groups, and a long hydrophobic tail region.54 On the
basis of these chemical ligand properties, computational
modeling and site-directed mutagenesis studies have identified
important S1PR1 receptor−ligand interactions, including ionic
interactions between the negatively charged phosphate oxygens
of sphingosine 1-phosphate (S1P) and R1203.28 and between the
protonated amine of S1P and E1213.29.55,56 In addition, L2766.55

has been identified as a residue that contributes to ligand
selectivity for S1PR1 over S1PR3 (containing a leucine residue
at this position).57 The structure-based pharmacophore model
for S1PR1 indeed includes features for R1203.28, E1213.29, and
L2766.55, as supported by site-directed mutagenesis studies55,56

(Figures 3 and 4). Interestingly these essential S1PR1−ligand
interaction features are indeed observed in the recently solved
S1PR1 crystal structure (released during the preparation of this
manuscript),41 corroborating our S1PR1 homology model58 and
the structure-based pharmacophore model constructed in the
current study.
Retrospective Virtual Screening Validation. In order to

assess the likelihood of prospective performance of our
structure-based and ligand-based virtual screening protocols,
first a retrospective validation was performed, using the 50
diverse actives for AA2AR and ADRB2 vs the 50 308 assumed
inactive compounds of the compound library. Here signi-
ficant early enrichment was observed, as shown in Figure 5.

Retrospective enrichment for AA2AR is poor for the structure-
based method, probably (i) because of the fact that a large
portion of AA2AR ligands bind in the extracellular domain that
is not represented in Snooker pharmacophores and (ii) because
it is likely that the A2A adenosine receptor possesses no
conserved ligand binding site.40 The ligand-based method on
the other hand exhibits excellent performance for this receptor;
however, it might be biased toward known chemistry in our
retrospective virtual screening studies. A combination of both
methods is hence likely to result in a reduced number of
identified actives when compared to the substructure-based
method alone; however, it would be assumed to show more
novelty among identified active compounds (as well as
potentially a different set of ligand−protein interactions),
compared to the training set molecules.
In contrast to AA2AR ligands, the ADRB2 ligands bind

largely within the transmembrane (TM) domain and share a
common binding mode within a buried pocket. Therefore,
structure-based searches perform better on ADRB2 than on
AA2AR (Figure 5). They not only are able to capture the
actives faster but also retrieve a higher percentage of actives.
In this particular case, a combination of structure-based and
ligand-based methods for this receptor outperforms both the
individual ligand-based and structure-based virtual screening
methods (Figure 5).

Prospective Cross-Screening. For each of the three
bioactivity models a total of 300 compounds were selected.
Duplicates were removed, and in the case of unavailability of
the selected compound it was replaced with the next compound
in the list. The final selection of compounds (including cross-
receptor overlap) is visualized in Figure 6 (and Supporting
Information Figures 5−7) for all of the models. Figure 6 shows
that the ADRB2 model and the S1PR1 models select the same
compounds more often than other pairs of activity models.
Overlap in “hit selection space” can indeed have implications
on the results of prospective all-against-all virtual screening
studies, as described in more detail below.
Using our combined ligand- and structure-based virtual

screening approach, we have successfully identified 18 AA2AR,
6 ADRB2, and 3 S1PR1 ligands (Figures 7 and 8). ADRB2 and
AA2AR were tested for ligand displacement, detecting both
agonists and antagonists that bind to the orthosteric binding
site. Both protein-based pharmacophore models (derived from
orthosteric ligand binding sites of ADRB2 and AA2AR; see
Figure 3) and ligand-based models (based on substructures of

Figure 4. Similarity between the structure based pharmacophore of S1PR1 and ADRB2 ligands, illustrated by compound 21 and carazolol (in the
conformation as found in the crystal structure of ADRB239). Both compounds match the five-feature pharmacophore of S1PR1 and also fit in the
ADRB2 receptor pharmacophore (not shown).

Table 1. Number of Molecules in Training Set and Test Set
As Used for the Construction of the Substructure-Based
Model for AA2AR, ADRB2, and S1PR1a

training set test setb total

AA2ARc 179 76 255
ADRB2c 301 129 430
S1PR1d 172 74 246

aLigands for all three receptors were retrieved from ChEMBL.13 bThe
test set is 30% of the total set of selected ligands. cLigands with either
Ki, IC50, or EC50 of 10 nM or less. dLigands with either Ki, IC50, or
EC50 of 10 μM or less.
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Table 2. AA2AR and ADRB2 Receptor Binding Affinities and S1PR1 Potencies of Validated Hits Selected by a Combined
Ligand-Based (Frequent Substructure Ranking59) and Structure-Based (Snooker60) Virtual Screening Protocol (Figure 1)h
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orthosteric ADRB2 and AA2AR ligands) are constructed based
on information on the orthosteric ADRB2 and AA2AR binding
cavities. S1P1R was tested in a functional assay in agonistic format,
and experimentally confirmed S1PR1 hits might in principle also
bind to binding sites other than the cavity included in the
S1PR1-based pharmacophore model (Figure 3). Many of the
validated hits are chemically dissimilar to any known ADRB2,

AA2AR, or S1PR1 ligand (ECFP-4 Tanimoto similarity
below 0.4 (loose cutoff)61 or even below 0.26 (strict
cutoff);62 see Table 2). Structures of the new ligands are
visualized in Table 2, and plots of compound ranks versus
receptor activity are displayed in Figure 7, also distinguishing
between the in silico models used to select each bioactive
compound identified in this study. As can be seen in Figure 7,

Table 2. continued
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AA2AR showed highest overall hit rates, which agrees with
our initial hypothesis. However, a significant number of con-
firmed AA2AR hits also came from the S1PR1 model, which
was rather surprising to us and which is discussed in more detail
below. Experimentally determined radioligand displacement
(AA2AR and ADRB2) and dose−response curves (S1PR1) are
shown in Figure 8.
The virtual screening procedure was very successful for

AA2AR and selected 12 out of the 18 active compounds for this
receptor directly (including compound 3, for which the
proposed binding mode in AA2AR is depicted in Figure 3).
Another three compounds were contained in the virtual
AA2AR hit list; however, they were actually selected for testing
because they had a better rank in the virtual screening for

another receptor (namely, S1PR1). Surprisingly, one of those
three compounds is the phosphodiesterase 5 (PDE5) inhibitor
sildenafil (compound 1) that has submicromolar affinity for the
AA2AR receptor (Table 2, Figure 2). This is in line with
previous in vivo studies suggesting that spinal adenosine
receptors may play a role in sildenafil-induced antinociception63

and cardioprotective signaling.64 Comparison of the ZM241385
bound AA2AR40 and sildenafil bound PDE565 cocrystal
structures reveals that both pockets possess similar interaction
features for ligand binding. ZM241385 makes hydrogen
bonding interactions with the amide side chain of N2536.55

equivalent to the interaction of sildenafil with Q817 in PDE5.
Similarly, the bicyclic rings of both ZM241385 and sildenafil are
locked in a hydrophobic clamp between F16845.52, I2747.39, and

Table 2. continued

aAverage rank based on AA2AR proteins-based pharmacophore and frequent AA2AR ligand substructure rankings (Figure 1). bAverage rank based
on ADRB2 protein-based pharmacophore and frequent ADRB2 ligand substructure rankings (Figure 1). cAverage rank based on S1PR1 protein-
based pharmacophore and frequent S1PR1 ligand substructure rankings (Figure 1). dpKi values are calculated by displacement of [3H]ZM241385
binding on membranes of HEK293T cells stably expressing the AA2AR (n = 3, each performed in duplicate). epKi values are calculated by
displacement of [3H]dihydroalprenolol binding on membranes of HEK293T cells transiently expressing the ADRB2 (n = 3, each performed in
triplicate). fpEC50 values are calculated by induction of β-arrestin2 recruitment in CHO-K1 S1PR1 β-arrestin EFC cells (n = 1, each performed in
triplicate). gECFP-4 circular fingerprint Tanimoto similarity to closest known AA2AR/ADRB2/S1PR1 active in ChEMBLdb. A similarity higher
than 0.40 is considered significant.61 hClosest chemical similarity to any known AA2AR/ADRB2/S1PR1 ligand is given for each validated hit.
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L2496.51 (AA2AR) and F820, V782, and F786 (PDE5),
respectively (Supporting Information Figure 6). Our unbiased
computer-aided discovery of sildenafil as a true AA2AR ligand is
therefore an interesting result, indicating that systematic in silico
chemogenomics studies can be used to identify new interest-
ing cross-pharmacology between unrelated protein targets. In
this context the concepts of “GPCR-like compounds” and
“privileged scaffolds”66 is also likely reflected in our selection
procedure, given the observation that compounds active on the
AA2AR receptor were retrieved when explicitly selecting for its
ligands, as well in the ADRB2 and S1PR1 compound selection
rounds.

For the ADRB2 receptor 6 confirmed hits could be identified
(including compound 21, for which the proposed binding mode
in ADRB2 is shown in Figure 3), which is a much smaller
number of hits than in the case of AA2AR. This is in agreement
with the restricted chemical diversity of ligands for this receptor,
compared to those of the AA2AR receptor. The active
compounds that were identified against ADRB2 interestingly
resulted from the compound selection for the AA2AR and
S1PR1 receptors. The fact that we were not able to identify any
ADRB2 ligands from the ADRB2 virtual screening run might
of course be related to the fact that all compounds similar to
known ADRB2 actives were excluded from the compound set;

Figure 5. Receiver operating curves (ROC) for the ligand-based and structure-based virtual screening methods employed in this work. While the
substructure-based method, on average, is able to achieve higher enrichment than the employed structure-based method, the extent of this difference
is very much dependent on the target receptor considered, with AA2AR showing significantly higher retrieval of active compounds than ADRB2.
Consensus scoring outperforms each individual method in the case of ADRB2.

Figure 6. Hit selection space based on the combined protein-based pharmacophore and ligand substructure virtual screens (3780 for AA2AR (blue),
810 for ADRB2 (green), and 1205 for S1PR1 (gray)). Most compounds are selected, since they are expected to have activity on only one of the
three receptors. Some compounds are, however, expected to have activity on multiple receptors (front-upper, left-upper, right-upper, and front-lower
corner), and a small set (front upper corner) is even expected to have activity on all three targets. Compounds are colored according to the receptor
in which they receive the best rank.
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however, the ability to identify compounds active on one
receptor using a model for another (albeit related) receptor
remains remarkable (as well as consistent throughout the
receptors employed in this study). Notably, five of the ADRB2
bioactives were retrieved with the S1PR1 receptor pharmaco-
phore. One possible reason we identified is that important
hydrogen bonding and charge interactions are present in both
ligand−receptor interactions (which correspond to a similar
distance between D1133.32 and Y1995.38 in ADRB2, compared to
R1203.28 and E1213.29 in S1PR1; Figures 3 and 4). In addition to
these polar features, the pharmacophore model consists of
hydrophobic features that are located in the vicinity of L2766.55,
which forms the binding site of the aliphatic tail of the ligand
in the S1PR1 cocrystal structure.41 The hydrophobic features
are situated at the conjunction of L2766.55 and Y2025.39 in the
S1PR1 homology model (Figures 3 and 4). However, the side
chain of Y2025.39 is located further from the ligand binding site
(closest distance to the ligand is 6 Å) as a result of the different
helical conformation of TM5 (the reason being that S1PR1
lacks the conserved P5.50 residue that induces a helical kink in
other GPCR crystal structures41). Another aromatic residue,
Y1253.33, recently shown to play a role in S1PR1 ligand binding
based on site-directed mutagenesis studies58 and involved in
S1PR1-ligand interactions in the S1PR1 crystal structure41 is
also very close to the location of some of the hydrophobic
pharmacophore features in our S1PR1 homology model. While
hydrophobic interactions originate in ADRB2 mainly from
V1143.33 and in S1PR1 from Y2025.39 and L2766.55, they are in
both cases located at fairly similar positions, further rationalizing
the relatively high degree of overlap of the in silico hit lists of
ADRB2 and S1PR1. The match of compound 21 in the S1PR1
pharmacophore is displayed in Figure 4, including a fit of the
crystal structure conformation of carazolol of the ADRB2
receptor39 in this pharmacophore. The complementarity of the
S1PR1 pharmacophore to known ADRB2 ligands, in combina-
tion with the high similarity of the S1PR1 pharmacophore to the
ADRB2 pharmacophore, is the best explanation of the ability of

the S1PR1 structure-based pharmacophore to retrieve ligands
bioactive against ADRB2. Although compounds 21−24 have
relatively low affinity for ADRB2, these molecules offer
interesting starting points for hit optimization and give insights
into molecular determinants of ADRB2 binding. The low
affinity of hit 21 suggests that small polar groups close to the
essential basic nitrogen moiety are not favorable for ADRB2
binding. Compound 24 on the other hand has a relatively high
ligand efficiency (LE = 0.42) and shares a 2-((dimethylamino)-
methyl)phenol scaffold with compound 22 that can be used for
future ADRB2 ligand optimization studies.
For S1PR1, three agonists were identified, of which

compound 26 originated from the ligands selected explicitly
for this receptor. The proposed binding mode in the S1PR1
binding mode of 26 is presented in Figure 3. Overall, two of
the three compounds active against S1PR1 were actually
selected by the AA2AR model, again a surprising result of our
prospectively validated all-against-all virtual screening study.
Although the potency of the validated S1PR1 agonists 26−28 is
relatively low, so far only very few S1PR1 ligands have been
reported that lack a negatively ionizable functional group. The
validated hits 26−28 therefore are potential interesting new
starting points for S1PR1 ligand optimization studies.

Lessons Learned. The following lessons can be learned
from our systematic prospective evaluation of a protein-based
and a ligand-based virtual screening platform against ADRB2,
AA2AR, and S1PR1:

1. Systematic validation of structure-based and ligand-
based virtual screening approaches requires experimental
biological activity data for all ligands against all
investigated protein targets. With the increasing amount of
experimental information on protein targets and their ligands,
complementary computational tools are required that are able
to mine this large matrix of experimental data to predict novel
protein−ligand interactions. Complete all-against-all data sets
containing the biological activities of multiple molecules for a
set of protein targets (like the one generated in our study) are

Figure 7. Novel active compounds found using the respective models for the three receptors in this study (adenosine A2A receptor, β-2 adrenergic
receptor, and sphingosine 1-phosphate receptor). The top of the plot shows the receptor for which the ligands were experimentally found to be
active against, while the bottom of the plot shows the model that was used in silico to select each respective compound.
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essential for testing in silico methods in real life screening
scenarios and for evaluating their ability to predict, for example,
ligand cross-pharmacology and toxicity (i.e., interactions with
antitargets).
2. Retrospective validation of virtual screening methods

can be used to assess the limitations of (combining) ligand-
based and protein-based discovery of chemically novel
ligands. The rather diverse AA2AR ligand training set

facilitated the construction of a robust ligand-based model
that was successfully used to discover a diverse set of novel
AA2AR ligands. The lower chemical diversity of the ADRB2
and S1PR1 training sets made the discovery of novel ligands for
these receptor more challenging and required a combination of
ligand- and protein-based virtual screening models.

3. Overlap in protein-based pharmacophore models can
yield experimentally validated hits that are not (only) active
against the receptor they were selected for but (also)
against a different member of the panel. However, by use of
protein-based virtual screening methods (complementary to
ligand-based virtual screening), protein−ligand binding mode
hypotheses can be generated to identify conserved and selective
interaction features in different protein targets and to guide hit
optimization studies.

■ CONCLUSIONS
We performed compound selections for three receptors
(AA2AR, ADRB2, and S1PR1) based on a combined structure
(pharmacophore) and ligand (substructure) based approach.
Retrospective analysis of both individual methods on the
AA2AR and ADRB2 receptor indicated that virtual screening
accuracy is to a large extent dependent on the chemical
diversity among the bioactive compound class:.The rather
diverse AA2AR ligand training set facilitated the construction of
a robust ligand-based model that turned out to be superior to
the protein-based model, while a combination of a ligand- and
protein-based model gave the best results for ADRB2.
Using a consensus scoring procedure combining the ligand-

based and structure-based approaches, we selected 300 com-
pounds for each of the three GPCR targets and experimentally
tested all 900 in silico hits against all other receptors in the
study. Novel bioactive compounds were identified using a
consensus scoring procedure combining ligand-based and
structure-based tools (18 actives for AA2AR, 6 actives for
ADRB2, and 3 actives for S1PR1). While these variations in hit
rates might not be surprising by themselves, what is certainly
remarkable is the high number of experimentally validated hits
that were not active against the receptor they were selected for
but rather against a different member of the panel. Interestingly,
one of those ligands is the phosphodiesterase 5 (PDE5)
inhibitor sildenafil that was found to have submicromolar affinity
for the AA2AR adenosine receptor, demonstrating that our
systematic in silico chemogenomics studies can be used to
identify new interesting cross-pharmacology between unrelated
protein targets.
Ideally, the chemogenomics approach presented here should

be extended with more compounds and a larger panel of targets
and should preferably be tested using the same assay technology.
Such endeavors are already frequently employed for other
protein families, such as for kinases, and they are hoped to
provide more complete information for both hit identification
and optimization than the current state-of-the-art single-target
screens are able to do.67 The lessons learned from this exercise
can be used to guide future virtual ligand design efforts.

■ EXPERIMENTAL SECTION
The virtual screening setup employed in this work consists of (1) a
structure-based protocol (based on inverse pharmacophores), (2) a
ligand-based protocol (based on frequent substructure mining), and
(3) a merging of the results of the two followed by a prospective
validation. This setup is schematically displayed in Figure 1, and its
parts will be described in detail in the below sections.

Figure 8. (A) Compounds 1−3 selected from the AA2AR screen dose-
dependently displacing [3H]ZM241385 from AA2AR. (B) Compounds
19−21 selected from the ADRB2 screen dose-dependently displacing
[3H]dihydroalprenolol from ADRB2. (C) Compounds 25−27 selected
from the S1PR1 screen dose-dependently inducing β-arrestin2 recruit-
ment. PathHunter CHO-K1 S1PR1 β-arrestin EFC cells genetically
engineered to increase β-galactosidase activity following the recruitment of
β-arrestin2 to S1PR1 receptor were stimulated with increasing con-
centrations of 25, 26, 27 for 2 h before measurement of β-galactosidase
activity. A single concentration of AUY954 (1 μM) was taken along to
measure maximal β-arrestin2 recruitment.
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Structure-Based Pharmacophore Screening. Structure-based
pharmacophores describing the negative image of the pocket, located
between the transmembrane helices, were generated for all three
GPCRs with the previously described Snooker progam.60 Snooker is a
structure-based approach to generate pharmacophore hypotheses for
compounds binding to the TM domain of GPCRs. Snooker does not
require prior knowledge of ligands but selects residues based on their
probability of being involved in ligand binding based on their sequence
conservation (expressed as entropy values) inside and outside each
GPCR subfamily.68 Subsequently, protein properties of selected
residues are projected to complementary ligand space, and pharma-
cophore features are generated at positions where protein−ligand
interactions are likely.60 For AA2AR and ADRB2 a consensus model
based on eight different templates (PDB codes 1GZM, 1L9H, 2RH1,
2VT4, 3CAP, 3D4S, 3DQB, 3EML) was constructed,60 whereas for
S1PR1 a model was generated based on an experimentally validated
agonist-bound homology model.58 It was only very recently, during the
preparation of the current manuscript, that the ligand bound crystal
structure of S1PR1 was published41 showing the same essential
receptor−ligand interactions as predicted in our receptor structure-
based pharmacophore model (constructed prior to the release of the
S1PR1 crystal structure).41 To gain specificity, directionality was added
to the polar pharmacophore features as the average vector between the
polar feature center and the Cα atom of the residues that constitute
the respective features.
Structure-Based Pharmacophore (SBP) Ligand Training Set. The

structure-based pharmacophores for virtual screening are selected by
a training procedure that utilizes ligand information. Known active
compounds for the three target proteins investigated, i.e., the β-2
adrenoreceptor (ADRB2), the adenosine A2A receptor (AA2AR), and
the sphingosine 1-phosphate receptor (S1PR1), were extracted for all
species from the ChEMBL database (release August 2009)
independently of the functional class (agonist, partial agonist, antagonist,
inverse agonist) using an activity cutoff on Ki, IC50, or EC50 of less than
50 nM. To reduce the bias introduced by the deposition of compound
series, diverse subsets of 50 compounds were generated for the AA2AR
and ADRB2 receptors by exclusion sphere clustering on Tanimoto
distances between the BCI fingerprints of the compounds. For the
S1PR1 receptor all 43 compounds reported in ChEMBL were used as a
training set.
Pharmacophore Model Generation and Training. Structure-based

pharmacophores for all three targets were subsequently trained with
their corresponding SBP ligand training sets of 50 known actives. In
this training procedure, the subsets of pharmacophore features that are
able to retrieve active compounds were ranked first according to the
number of features in the pharmacophore and subsequently according
to the number of known actives that they were able to retrieve.
To optimize screening outcome, the ranking of pharmacophores was
manually adjusted based on crystal structure information and
mutagenesis data (see Supporting Information Tables 1−4). Finally,
shape restraints were defined by the Tanimoto distance of the
compounds matching the ADRB2 and AA2AR pharmacophores to the
cocrystallized ligands carazolol and ZM241385, respectively.39,40 For
S1PR1, shape restraints were defined as the Tanimoto distance
of compounds matching the S1PR1 pharmacophore to the average
pose of known actives from the S1PR1 training set in the same
pharmacophore. Tanimoto distance cutoffs were set to those values
at which the enrichment of known actives over the 50 308 database
compounds was optimal (0.700 for AA2AR, 0.675 for ADRB2, and
0.600 for S1PR1).
Pharmacophore Screening Settings. Pharmacophore screening

was performed via RDKit using the procedure described by Sanders
et al.60 Projected points were also calculated in RDKit and treated in
the same manner as other feature types, with the exception that a
heavy-atom−projected-point pair could not be separated and had to
match a feature−projected-feature pair. The angular difference
between the vectors describing the heavy-atom−projected-point pair
and the feature−projected-feature pair was required to lie within 45°
of each other.

Preparation of Prospective Pharmacophore Screening Library.
The compound library used for screening (described in detail below)
was prepared as follows for the structure-based virtual screening
protocol. Initial three-dimensional conformations were generated with
CORINA,69 and multiple 3D conformations were created with a
genetic algorithm, Cyndi,70 employing a population size of 200 and
finally outputting 100 conformations per molecule. Given that the
algorithm used here is designed for screening millions of compounds
of typical in-house or vendor libraries, no further force field
minimization of compounds has been performed.

Ligand (Frequent Substructure) Based Virtual Screening.
For the ligand-based screening study, the substructure-based screening
method of van der Horst et al.59 was employed. This method performs
screening by searching library compounds for the occurrence of
substructures characteristic for bioactivity against a particular receptor.
These substructures are derived from existing ligands of the target
investigated and are selected for their ability to distinguish ligands for
this target from ligands for other, secondary proteins.

Ligand-Based (LB) Training Set. For the human adenosine A2A
receptor (AA2AR), β2 adrenoceptor (ADRB2), and the S1P1
lysophospholipid receptor (S1PR1), ligand structures and activity
data were retrieved from the ChEMBL database,13 selecting
compounds with activity, i.e., a Ki, IC50, or EC50, of 10 nM or less
for the adenosine A2A receptor and 10 μM or less for the other two
receptors. For the A2A ligands, we chose a stricter selection, since
this resulted in a set of high-affinity ligands that was still of comparable
size to the other two ligand sets. Subsequent manual inspection was
performed to ensure validity of the LB training set. All source sets were
split into a training set and a test set using the “Diverse Molecules”
component in PipelinePilot, version 6.1, using a 30% test set in
combination with FCFP-4 fingerprints (both training and test set sizes
are provided in Table 1). For analysis of the substructures, all training
sets were contrasted against a background compound distribution,
consisting of 10 000 randomly selected compounds from the druglike
subset of the ZINC database (accessed February 12, 2010).71 Chemical
structures were represented as graphs indicating the type of the bonds,
e.g., single, double, or aromatic.

Generation of “Frequently Occurring Substructures”. Frequent
substructure sets were generated using the frequent graph miner
Gaston.72 For each substructure, the number of molecules containing
that particular substructure was calculated. The difference between the
relative occurrence (fraction) of a substructure in the antagonists set
and the background set is the score contribution of that substructure.
Substructures were ranked according to the score contribution in
descending order, and the 50 highest-ranking substructures were
selected for the virtual screening model.

Substructure-Based Virtual Screening: Ranking of Compounds.
Substructure scores were employed to rank database compounds
(which might contain multiple substructures per compound). For this
ranking, the score for a compound was calculated as the sum of all score
contributions of substructures present in each particular structure.

Virtual Screening Library. A diverse subset of the MSD/
Organon (Oss, The Netherlands) library consisting of 50 308 com-
pounds was used for virtual screening. In order to characterize the
library, the overlap of the available library with the ZINC purchasable
compound set (∼23 700 000) was determined. The latter consists of
compounds with a MW ≤ 500 Da from 26 vendors. To determine the
overlap between the two libraries, structures were converted into
unique hash codes without considering stereochemistry. From the
50 308 MSD compounds, 85% occurred in the 23 691 219 ZINC71

compound database and 60% occurred in the 6 981 556 CoCoCo73

compound database (Supporting Information Figure 1). The MSD
compounds possess physicochemical properties similar to those within
the ZINC and CoCoCo compound databases, placing emphasis on
druglikeness74,75 (Supporting Information Figure 2). Compounds that
occurred in the training or test sets were removed from the screening
library, as well as compounds that had already been tested against one
of the targets. In addition, for the AA2A receptor, compounds with a
typical adenosine receptor ligand scaffold, such as xanthines, have been
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removed in order to improve the likelihood of discovering structurally
novel compounds through this work.
Final Compound Selection. After compound selection, we

removed compounds very similar to known active structures in the
cases of the AA2AR and ADRB2 virtual hit list, namely, those with a
Tanimoto coefficient (Tc) of >0.5 to known bioactive compounds
(as annotated in ChEMBL and employing ECFP_4 fingerprints). This
step was performed to ensure that sufficiently novel active compounds
would be discovered in this work, which is particularly relevant in the
case of the AA2AR receptor for which already chemically diverse sets
of ligands are known (Figure 2). A selection of 300 compounds for
each receptor was made after determination of the average rank of
each compound that matched a pharmacophore and had a positive
score in the frequent substructure procedure. Where compounds
were not available for testing, the next best compound was selected.
The compounds selected by virtual screening were part of a diverse
subset of the in-house chemical library of MSD/Organon (Oss, The
Netherlands) and originally purchased from available screening
collections of eight vendors: Asinex (www.asinex.com), Bionet
(www.keyorganics.co.uk), Chembridge (www.chembridge.com),
Chemdiv (www.chemdiv.com), Contract Chemicals (www.contract-
chemicals.com), Interbioscreen (www.ibscreen.com), Orion (www.
orionscientific.in), and Specs (www.specs.net). Purity of compounds
was equal to or greater than 95% as verified by LC−MS experiments
performed by the vendors.
Experimental Validation. Adenosine A2A Receptor. HEK293

cells stably expressing the human AA2AR receptor (gift from
Dr. Wang, Biogen, Cambridge, MA) were used to determine the
affinity of compounds in a radioligand binding assay with [3H]-
ZM241385 as the radioligand. Membranes containing 40 μg of protein
were incubated in a total volume of 100 μL of Tris-HCl (50 mM, pH
7.4) and [3H]ZM241385 (final concentration of 1.7 nM) for 2 h at
25 °C in a shaking water bath. Nonspecific binding was determined
in the presence of 100 μM CGS21680. The incubation was terminated
by filtration over prewetted Whatman GF/B filters under reduced
pressure with a Brandel harvester. Filters were washed three times
with ice-cold buffer and placed in scintillation vials. Emulsifier Safe
(3.5 mL) was added, and after 2 h radioactivity was counted in a
TriCarb 2900TR liquid scintillation counter. Compounds that
inhibited binding by ≥50% at 10 μM were subject to testing in
concentration−response curves.
β-2 Adrenoreceptor. HEK293T cells were cultured and transiently

transfected with 2.5 μg of ADRB2-pcDNA3.1+ (obtained from the
Missouri S&T cDNA Resource Center ) per 106 cells using 12 μg of
linear 25 kDa polyethylenimine (Polysciences, Warrington, PA, U.S.)
as described previously.76 Cells were harvested 48 h after transfection,
and membrane fractions were prepared as described previously.76

ADRB2-expressing membranes were incubated at room temperature
in 96-well plates in binding buffer (50 mM HEPES, pH 7.4, 1 mM
CaCl2, 5 mM MgCl2, 100 mM NaCl, and 0.5% (w/v) BSA) with 1 nM
[3H]dihydroalprenolol (DHA, 104.4 Ci/mmol from PerkinElmer Life
Sciences) and 10 μM or increasing concentrations of compounds.
After 1 h, incubations were terminated by rapid filtration through
Unifilter GF/C plates (PerkinElmer Life Sciences) presoaked in 0.5%
polyethylenimine and washed with ice-cold binding buffer supple-
mented with 500 mM NaCl. Radioactivity was measured using a
MicroBeta Trilux (PerkinElmer Life Sciences). Compounds that
inhibited binding by ≥50% at 10 μM were subject to testing in
concentration−response curves. Nonlinear regression analysis of data
and calculation of Kd and Ki values was performed using GraphPad
Prism, version 4, software.
Sphingosine 1-Phosphate Receptor. The S1PR1 assay was

performed using the PathHunter enzyme fragment complementation
β-arrestin recruitment technology as described previously.77 CHO-K1
S1PR1 β-arrestin EFC cells (DiscoveRx, Fremont, CA) were cultured
in Dulbecco’s modified Eagle's medium F-12 (Invitrogen, Carlsbad,
CA), supplemented with 10% heat-inactivated fetal calf serum
(Cambrex, Verviers, Belgium), 100 U/mL penicillin, 100 μg/mL
streptomycin, 300 μg/mL hygromycin B, and 800 μg/mL Geneticin
(Invitrogen). Cells were seeded at a density of 10 000 cells per well of

a 384-well culture plate (PerkinElmer, Boston, MA) in 20 μL of OPTI-
MEM (Invitrogen). After overnight incubation at 37 °C in a humidified
incubator (5% CO2, 95% humidity), 4 μL of compound dilution was
added to cells and the plate was returned to the incubator for 2 h,
followed by incubation at room temperature for 1 h. Cells were lysed
using 8 μL of PathHunter detection reagent (DiscoveRx). Plates were
incubated in the dark for 2 h at room temperature before measurement
of β-galactosidase activity (chemiluminescence) on an Envision
multilabel plate reader (PerkinElmer Life Sciences). Compounds that
induced ≥30% β-arrestin recruitment compared to the reference
compound AUY954 were selected and tested in dose−response curves.
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AA2AR, adenosine A2A receptor; ADRB2, adrenergic β-2
receptor; BCI, Barnard Chemical Information; ECFP, extended
connectivity fingerprint; FCFP, functional class fingerprint;
GPCR, G-protein-coupled receptor; LB, ligand based; PDE5,
phosphodiesterase 5; S1PR1, sphingosine 1-phosphate recep-
tor; S1P, sphingosine 1-phosphate; TC, Tanimoto coefficient;
TM, transmembrane (helix); SBP, structure based pharmaco-
phore; VS, virtual screening
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